當(dāng)前位置:首頁 > 產(chǎn)品中心 > 抗體/抗原 >
產(chǎn)品分類
Product Category相關(guān)文章
Related ArticlesArginase I which is expressed almost exclusively in the liver, catalyzes the conversion of arginine to ornithine and urea . The human arginase I gene, which maps to chromosome 6q23, encodes a 322 amino acid protein. Arginase I exists as a homotrimeric protein and contains a binuclear manganese cluster. Arginase II catalyzes the same reaction as arginase I, but differs in its tissue specificity and subcellular location. Specifically, arginase II localizes to the mitochondria. Arginase II is e
Arginase I which is expressed almost exclusively in the liver, catalyzes the conversion of arginine to ornithine and urea . The human arginase I gene, which maps to chromosome 6q23, encodes a 322 amino acid protein. Arginase I exists as a homotrimeric protein and contains a binuclear manganese cluster. Arginase II catalyzes the same reaction as arginase I, but differs in its tissue specificity and subcellular location. Specifically, arginase II localizes to the mitochondria. Arginase II is e
Arginase I which is expressed almost exclusively in the liver, catalyzes the conversion of arginine to ornithine and urea . The human arginase I gene, which maps to chromosome 6q23, encodes a 322 amino acid protein. Arginase I exists as a homotrimeric protein and contains a binuclear manganese cluster. Arginase II catalyzes the same reaction as arginase I, but differs in its tissue specificity and subcellular location. Specifically, arginase II localizes to the mitochondria. Arginase II is e
Arginase I which is expressed almost exclusively in the liver, catalyzes the conversion of arginine to ornithine and urea . The human arginase I gene, which maps to chromosome 6q23, encodes a 322 amino acid protein. Arginase I exists as a homotrimeric protein and contains a binuclear manganese cluster. Arginase II catalyzes the same reaction as arginase I, but differs in its tissue specificity and subcellular location. Specifically, arginase II localizes to the mitochondria. Arginase II is e
Differentiation of myogenic cells is regulated by multiple positively and negatively acting factors. One well characterized family of helix-loop-helix (HLH) proteins known to play an important role in the regulation of muscle cell development include Myo D, myogenin, Myf-5 and Myf-6 (also designated MRF-4 or herculin). Of interest, most muscle cells express either Myo D or Myf-5 in the committed state, but when induced to differentiate, all turn on expression of myogenin. Myo D transcription
Present in the extracellular matrix of human articular cartilage at all ages, although its abundance is far greater in the adult. In the adult cartilage lumican exists predominantly in a glycoprotein form lacking keratan sulfate, whereas the juvenile form of the molecule is a proteoglycan.